UInt/SInt
The UInt
/SInt
types are vectors of bits interpreted as two’s complement unsigned/signed integers.
They can do what Bits
can do, with the addition of unsigned/signed integer arithmetic and comparisons.
Declaration
The syntax to declare an integer is as follows: (everything between [] is optional)
Syntax |
Description |
---|---|
UInt[()]
SInt[()]
|
Create an unsigned/signed integer, bits count is inferred |
UInt(x bits)
SInt(x bits)
|
Create an unsigned/signed integer with x bits |
U(value: Int[,x bits])
U(value: BigInt[,x bits])
S(value: Int[,x bits])
S(value: BigInt[,x bits])
|
Create an unsigned/signed integer assigned with ‘value’ |
U”[[size’]base]value”
S”[[size’]base]value”
|
Create an unsigned/signed integer assigned with ‘value’
(base: ‘h’, ‘d’, ‘o’, ‘b’)
|
U([x bits,] elements: Element*)
S([x bits,] elements: Element*)
|
Create an unsigned integer assigned with the value specified by elements |
val myUInt = UInt(8 bit)
myUInt := U(2, 8 bit)
myUInt := U(2)
myUInt := U"0000_0101" // Base per default is binary => 5
myUInt := U"h1A" // Base could be x (base 16)
// h (base 16)
// d (base 10)
// o (base 8)
// b (base 2)
myUInt := U"8'h1A"
myUInt := 2 // You can use a Scala Int as a literal value
val myBool = Bool()
myBool := myUInt === U(7 -> true, (6 downto 0) -> false)
myBool := myUInt === U(8 bit, 7 -> true, default -> false)
myBool := myUInt === U(myUInt.range -> true)
// For assignment purposes, you can omit the U/S
// which also allows the use of "default -> ???"
myUInt := (default -> true) // Assign myUInt with "11111111"
myUInt := (myUInt.range -> true) // Assign myUInt with "11111111"
myUInt := (7 -> true, default -> false) // Assign myUInt with "10000000"
myUInt := ((4 downto 1) -> true, default -> false) // Assign myUInt with "00011110"
Operators
The following operators are available for the UInt
and SInt
types:
Logic
Operator |
Description |
Return type |
---|---|---|
~x |
Bitwise NOT |
T(w(x) bits) |
x & y |
Bitwise AND |
T(max(w(x), w(y)) bits) |
x | y |
Bitwise OR |
T(max(w(x), w(y)) bits) |
x ^ y |
Bitwise XOR |
T(max(w(x), w(y)) bits) |
x.xorR |
XOR all bits of x (reduction operator) |
Bool |
x.orR |
OR all bits of x (reduction operator) |
Bool |
x.andR |
AND all bits of x (reduction operator) |
Bool |
x >> y |
Arithmetic shift right, y : Int |
T(w(x) - y bits) |
x >> y |
Arithmetic shift right, y : UInt |
T(w(x) bits) |
x << y |
Arithmetic shift left, y : Int |
T(w(x) + y bits) |
x << y |
Arithmetic shift left, y : UInt |
T(w(x) + max(y) bits) |
x |>> y |
Logical shift right, y : Int/UInt |
T(w(x) bits) |
x |<< y |
Logical shift left, y : Int/UInt |
T(w(x) bits) |
x.rotateLeft(y) |
Logical left rotation, y : UInt/Int
The width of y is constrained to the width of log2Up(x) or less
|
T(w(x) bits) |
x.rotateRight(y) |
Logical right rotation, y : UInt/Int
The width of y is constrained to the width of log2Up(x) or less
|
T(w(x) bits) |
x.clearAll[()] |
Clear all bits |
modifies x |
x.setAll[()] |
Set all bits |
modifies x |
x.setAllTo(value : Boolean) |
Set all bits to the given Boolean value |
modifies x |
x.setAllTo(value : Bool) |
Set all bits to the given Bool value |
modifies x |
Note
Notice the difference in behaviour between x >> 2
(result 2 bit narrower than x) and x >> U(2)
(keeping width)
due to the Scala type of y
.
In the first case “2” is an Int
(which can be seen as an
“elaboration integer constant”), and in the second case it is a hardware signal
(type UInt
) that may or may not be a constant.
val a, b, c = SInt(32 bits)
a := S(5)
b := S(10)
// Bitwise operators
c := ~(a & b) // Inverse(a AND b)
assert(c.getWidth == 32)
// Shift
val arithShift = UInt(8 bits) << 2 // shift left (resulting in 10 bits)
val logicShift = UInt(8 bits) |<< 2 // shift left (resulting in 8 bits)
assert(arithShift.getWidth == 10)
assert(logicShift.getWidth == 8)
// Rotation
val rotated = UInt(8 bits) rotateLeft 3 // left bit rotation
assert(rotated.getWidth == 8)
// Set all bits of b to True when all bits of a are True
when(a.andR) { b.setAll() }
Arithmetic
Operator |
Description |
Return |
---|---|---|
x + y |
Addition |
T(max(w(x), w(y)) bits) |
x +^ y |
Addition with carry |
T(max(w(x), w(y)) + 1 bits) |
x +| y |
Addition of addend with saturation (see also T.maxValue and T.minValue) |
T(max(w(x), w(y)) bits) |
x - y |
Subtraction |
T(max(w(x), w(y)) bits) |
x -^ y |
Subtraction with carry |
T(max(w(x), w(y)) + 1 bits) |
x -| y |
Subtraction of subtrahend with saturation (see also T.minValue and T.maxValue) |
T(max(w(x), w(y)) bits) |
x * y |
Multiplication |
T(w(x) + w(y)) bits) |
x / y |
Division |
T(w(x) bits) |
x % y |
Modulo |
T(min(w(x), w(y)) bits) |
~x |
Unary One’s compliment, Bitwise NOT |
T(w(x) bits) |
-x |
Unary Two’s compliment of SInt type. Not available for UInt. |
SInt(w(x) bits) |
val a, b, c = UInt(8 bits)
a := U"xf0"
b := U"x0f"
c := a + b
assert(c === U"8'xff")
val d = a +^ b
assert(d === U"9'x0ff")
// 0xf0 + 0x20 would overflow, the result therefore saturates
val e = a +| U"8'x20"
assert(e === U"8'xff")
Note
Notice how simulation assertions are made here (with ===
), as opposed to elaboration
assertions in the previous example (with ==
).
Comparison
Operator |
Description |
Return type |
---|---|---|
x === y |
Equality |
Bool |
x =/= y |
Inequality |
Bool |
x > y |
Greater than |
Bool |
x >= y |
Greater than or equal |
Bool |
x < y |
Less than |
Bool |
x <= y |
Less than or equal |
Bool |
val a = U(5, 8 bits)
val b = U(10, 8 bits)
val c = UInt(2 bits)
when (a > b) {
c := U"10"
} elsewhen (a =/= b) {
c := U"01"
} elsewhen (a === U(0)) {
c.setAll()
} otherwise {
c.clearAll()
}
Note
When comparing UInt
values in a way that allows for “wraparound” behavior, meaning that the values will “wrap around” to the minimum value when they exceed the maximum value.
The wrap
method of UInt
can be used as x.wrap < y
for UInt
variables x, y
, the result will be true if x
is less than y
in the wraparound sense.
Type cast
Operator |
Description |
Return |
---|---|---|
x.asBits |
Binary cast to Bits |
Bits(w(x) bits) |
x.asUInt |
Binary cast to UInt |
UInt(w(x) bits) |
x.asSInt |
Binary cast to SInt |
SInt(w(x) bits) |
x.asBools |
Cast into a array of Bool |
Vec(Bool(), w(x)) |
x.asBool |
Extract LSB of |
Bool(x.lsb) |
S(x: T) |
Cast a Data into a SInt |
SInt(w(x) bits) |
U(x: T) |
Cast a Data into an UInt |
UInt(w(x) bits) |
x.intoSInt |
Convert to SInt expanding sign bit |
SInt(w(x) + 1 bits) |
myUInt.twoComplement(en: Bool) |
Generate two’s complement of number if |
SInt(w(myUInt) + 1, bits) |
mySInt.abs |
Return the absolute value as a UInt value |
UInt(w(mySInt) bits) |
mySInt.abs(en: Bool) |
Return the absolute value as a UInt value when |
UInt(w(mySInt) bits) |
mySInt.absWithSym |
Return the absolute value of the UInt value with symmetric, shrink 1 bit |
UInt(w(mySInt) - 1 bits) |
To cast a Bool
, a Bits
, or an SInt
into a UInt
, you can use U(something)
. To cast things into an SInt
, you can use S(something)
.
// Cast an SInt to Bits
val myBits = mySInt.asBits
// Create a Vector of Bool
val myVec = myUInt.asBools
// Cast a Bits to SInt
val mySInt = S(myBits)
// UInt to SInt conversion
val UInt_30 = U(30, 8 bit)
val SInt_30 = UInt_30.intoSInt
assert(SInt_30 === S(30, 9 bit))
mySInt := UInt_30.twoComplement(booleanDoInvert)
// if booleanDoInvert is True then we get S(-30, 9 bit)
// otherwise we get S(30, 9 bit)
// absolute values
val SInt_n_4 = S(-3, 3 bit)
val abs_en = SInt_n_3.abs(booleanDoAbs)
// if booleanDoAbs is True we get U(3, 3 bit)
// otherwise we get U"3'b101" or U(5, 3 bit) (raw bit pattern of -3)
val SInt_n_128 = S(-128, 8 bit)
val abs = SInt_n_128.abs
assert(abs === U(128, 8 bit))
val sym_abs = SInt_n_128.absWithSym
assert(sym_abs === U(127, 7 bit))
Bit extraction
All of the bit extraction operations can be used to read a bit / group of bits. Like in other HDLs
the extraction operators can also be used to assign a part of a UInt
/ SInt
.
Operator |
Description |
Return |
---|---|---|
x(y: Int) |
Static bit access of y-th bit |
Bool |
x(x: UInt) |
Variable bit access of y-th bit |
Bool |
x(offset: Int, width bits) |
Fixed part select of fixed width, offset is LSB index |
Bits(width bits) |
x(offset: UInt, width bits) |
Variable part-select of fixed width, offset is LSB index |
Bits(width bits) |
x(range: Range) |
Access a range of bits. Ex : myBits(4 downto 2) |
Bits(range.size bits) |
x.subdivideIn(y slices, [strict: Boolean]) |
Subdivide x into y slices, y: Int |
Vec(Bits(…), y) |
x.subdivideIn(y bits, [strict: Boolean]) |
Subdivide x in multiple slices of y bits, y: Int |
Vec(Bits(y bit), …) |
x.msb |
Access most significant bit of x (highest index, sign bit for SInt) |
Bool |
x.lsb |
Access lowest significant bit of x (index 0) |
Bool |
mySInt.sign |
Access most sign bit, only SInt |
Bool |
Some basic examples:
// get the element at the index 4
val myBool = myUInt(4)
// assign element 1
myUInt(1) := True
// index dynamically
val index = UInt(2 bit)
val indexed = myUInt(index, 2 bit)
// range index
val myUInt_8bit = myUInt_16bit(7 downto 0)
val myUInt_7bit = myUInt_16bit(0 to 6)
val myUInt_6bit = myUInt_16bit(0 until 6)
// assign to myUInt_16bit(3 downto 0)
myUInt_8bit(3 downto 0) := myUInt_4bit
// equivalent slices, no reversing occurs
val a = myUInt_16bit(8 downto 4)
val b = myUInt_16bit(4 to 8)
// read / assign the msb / leftmost bit / x.high bit
val isNegative = mySInt_16bit.sign
myUInt_16bit.msb := False
Subdivide details
Both overloads of subdivideIn
have an optional parameter strict
(i.e. subdivideIn(slices: SlicesCount, strict: Boolean = true)
).
If strict
is true
an error will be raised if the input could not be divided into equal parts. If set to false
the last element may
be smaller than the other (equal sized) elements.
// Subdivide
val sel = UInt(2 bits)
val myUIntWord = myUInt_128bits.subdivideIn(32 bits)(sel)
// sel = 3 => myUIntWord = myUInt_128bits(127 downto 96)
// sel = 2 => myUIntWord = myUInt_128bits( 95 downto 64)
// sel = 1 => myUIntWord = myUInt_128bits( 63 downto 32)
// sel = 0 => myUIntWord = myUInt_128bits( 31 downto 0)
// If you want to access in reverse order you can do:
val myVector = myUInt_128bits.subdivideIn(32 bits).reverse
val myRevUIntWord = myVector(sel)
// We can also assign through subdivides
val output8 = UInt(8 bit)
val pieces = output8.subdivideIn(2 slices)
// assign to output8
pieces(0) := 0xf
pieces(1) := 0x5
Misc
In contrast to the bit extraction operations listed above it’s not possible to use the return values to assign to the original signal.
Operator |
Description |
Return |
---|---|---|
x.getWidth |
Return bitcount |
Int |
x.high |
Return the index of the MSB (highest allowed index for Int) |
Int |
x.bitsRange |
Return the range (0 to x.high) |
Range |
x.minValue |
Lowest possible value of x (e.g. 0 for UInt) |
BigInt |
x.maxValue |
Highest possible value of x |
BigInt |
x.valueRange |
Return the range from minimum to maximum possible value of x (x.minValue to x.maxValue). |
Range |
x ## y |
Concatenate, x->high, y->low |
Bits(w(x) + w(y) bits) |
x @@ y |
Concatenate x:T with y:Bool/SInt/UInt |
T(w(x) + w(y) bits) |
x.resize(y) |
Return a resized copy of x, if enlarged, it is filled with zero
for UInt or filled with the sign for SInt, y: Int
|
T(y bits) |
x.resized |
Return a version of x which is allowed to be automatically
resized where needed
|
T(w(x) bits) |
x.expand |
Return x with 1 bit expand |
T(w(x)+1 bits) |
x.getZero |
Return a new instance of type T that is assigned a constant value of zeros the same width as x. |
T(0, w(x) bits).clearAll() |
x.getAllTrue |
Return a new instance of type T that is assigned a constant value of ones the same width as x. |
T(w(x) bits).setAll() |
Note
validRange can only be used for types where the minimum and maximum values fit into a signed
32-bit integer. (This is a limitation given by the Scala scala.collection.immutable.Range
type which uses Int)
myBool := mySInt.lsb // equivalent to mySInt(0)
// Concatenation
val mySInt = mySInt_1 @@ mySInt_1 @@ myBool
val myBits = mySInt_1 ## mySInt_1 ## myBool
// Resize
myUInt_32bits := U"32'x112233344"
myUInt_8bits := myUInt_32bits.resized // automatic resize (myUInt_8bits = 0x44)
val lowest_8bits = myUInt_32bits.resize(8) // resize to 8 bits (myUInt_8bits = 0x44)
FixPoint operations
For fixpoint, we can divide it into two parts:
Lower bit operations (rounding methods)
High bit operations (saturation operations)
Lower bit operations
About Rounding: https://en.wikipedia.org/wiki/Rounding
SpinalHDL-Name |
Wikipedia-Name |
API |
Mathematic Algorithm |
return(align=false) |
Supported |
---|---|---|---|---|---|
FLOOR |
RoundDown |
floor |
floor(x) |
w(x)-n bits |
Yes |
FLOORTOZERO |
RoundToZero |
floorToZero |
sign*floor(abs(x)) |
w(x)-n bits |
Yes |
CEIL |
RoundUp |
ceil |
ceil(x) |
w(x)-n+1 bits |
Yes |
CEILTOINF |
RoundToInf |
ceilToInf |
sign*ceil(abs(x)) |
w(x)-n+1 bits |
Yes |
ROUNDUP |
RoundHalfUp |
roundUp |
floor(x+0.5) |
w(x)-n+1 bits |
Yes |
ROUNDDOWN |
RoundHalfDown |
roundDown |
ceil(x-0.5) |
w(x)-n+1 bits |
Yes |
ROUNDTOZERO |
RoundHalfToZero |
roundToZero |
sign*ceil(abs(x)-0.5) |
w(x)-n+1 bits |
Yes |
ROUNDTOINF |
RoundHalfToInf |
roundToInf |
sign*floor(abs(x)+0.5) |
w(x)-n+1 bits |
Yes |
ROUNDTOEVEN |
RoundHalfToEven |
roundToEven |
No |
||
ROUNDTOODD |
RoundHalfToOdd |
roundToOdd |
No |
Note
The RoundToEven and RoundToOdd modes are very special, and are used in some big data statistical fields with high accuracy concerns, SpinalHDL doesn’t support them yet.
You will find ROUNDUP, ROUNDDOWN, ROUNDTOZERO, ROUNDTOINF, ROUNDTOEVEN, ROUNTOODD are very close in behavior, ROUNDTOINF is the most common. The behavior of rounding in different programming languages may be different.
Programming language |
default-RoundType |
Example |
comments |
---|---|---|---|
Matlab |
ROUNDTOINF |
round(1.5)=2,round(2.5)=3;round(-1.5)=-2,round(-2.5)=-3 |
round to ±Infinity |
python2 |
ROUNDTOINF |
round(1.5)=2,round(2.5)=3;round(-1.5)=-2,round(-2.5)=-3 |
round to ±Infinity |
python3 |
ROUNDTOEVEN |
round(1.5)=round(2.5)=2; round(-1.5)=round(-2.5)=-2 |
close to Even |
Scala.math |
ROUNDTOUP |
round(1.5)=2,round(2.5)=3;round(-1.5)=-1,round(-2.5)=-2 |
always to +Infinity |
SpinalHDL |
ROUNDTOINF |
round(1.5)=2,round(2.5)=3;round(-1.5)=-2,round(-2.5)=-3 |
round to ±Infinity |
Note
In SpinalHDL ROUNDTOINF is the default RoundType (round = roundToInf
)
val A = SInt(16 bits)
val B = A.roundToInf(6 bits) // default 'align = false' with carry, got 11 bit
val B = A.roundToInf(6 bits, align = true) // sat 1 carry bit, got 10 bit
val B = A.floor(6 bits) // return 10 bit
val B = A.floorToZero(6 bits) // return 10 bit
val B = A.ceil(6 bits) // ceil with carry so return 11 bit
val B = A.ceil(6 bits, align = true) // ceil with carry then sat 1 bit return 10 bit
val B = A.ceilToInf(6 bits)
val B = A.roundUp(6 bits)
val B = A.roundDown(6 bits)
val B = A.roundToInf(6 bits)
val B = A.roundToZero(6 bits)
val B = A.round(6 bits) // SpinalHDL uses roundToInf as the default rounding mode
val B0 = A.roundToInf(6 bits, align = true) // ---+
// |--> equal
val B1 = A.roundToInf(6 bits, align = false).sat(1) // ---+
Note
Only floor
and floorToZero
work without the align
option; they do not need a carry bit. Other rounding operations default to using a carry bit.
round Api
API |
UInt/SInt |
description |
Return(align=false) |
Return(align=true) |
---|---|---|---|---|
floor |
Both |
w(x)-n bits |
w(x)-n bits |
|
floorToZero |
SInt |
equal to floor in UInt |
w(x)-n bits |
w(x)-n bits |
ceil |
Both |
w(x)-n+1 bits |
w(x)-n bits |
|
ceilToInf |
SInt |
equal to ceil in UInt |
w(x)-n+1 bits |
w(x)-n bits |
roundUp |
Both |
simple for HW |
w(x)-n+1 bits |
w(x)-n bits |
roundDown |
Both |
w(x)-n+1 bits |
w(x)-n bits |
|
roundToInf |
SInt |
most Common |
w(x)-n+1 bits |
w(x)-n bits |
roundToZero |
SInt |
equal to roundDown in UInt |
w(x)-n+1 bits |
w(x)-n bits |
round |
Both |
SpinalHDL chose roundToInf |
w(x)-n+1 bits |
w(x)-n bits |
Note
Although roundToInf
is very common, roundUp
has the least cost and good timing, with almost no performance loss.
As a result, roundUp
is strongly recommended for production use.
High bit operations
function |
Operation |
Positive-Op |
Negative-Op |
---|---|---|---|
sat |
Saturation |
when(Top[w-1, w-n].orR) set maxValue |
When(Top[w-1, w-n].andR) set minValue |
trim |
Discard |
N/A |
N/A |
symmetry |
Symmetric |
N/A |
minValue = -maxValue |
Symmetric is only valid for SInt
.
val A = SInt(8 bits)
val B = A.sat(3 bits) // return 5 bits with saturated highest 3 bits
val B = A.sat(3) // equal to sat(3 bits)
val B = A.trim(3 bits) // return 5 bits with the highest 3 bits discarded
val B = A.trim(3 bits) // return 5 bits with the highest 3 bits discarded
val C = A.symmetry // return 8 bits and symmetry as (-128~127 to -127~127)
val C = A.sat(3).symmetry // return 5 bits and symmetry as (-16~15 to -15~15)
fixTo function
Two ways are provided in UInt
/SInt
to do fixpoint:
fixTo
is strongly recommended in your RTL work, you don’t need to handle carry bit alignment and bit width calculations manually like Way1 in the above diagram.
Factory Fix function with Auto Saturation:
Function |
Description |
Return |
---|---|---|
fixTo(section, roundType, symmetric) |
Factory FixFunction |
section.size bits |
val A = SInt(16 bits)
val B = A.fixTo(10 downto 3) // default RoundType.ROUNDTOINF, sym = false
val B = A.fixTo( 8 downto 0, RoundType.ROUNDUP)
val B = A.fixTo( 9 downto 3, RoundType.CEIL, sym = false)
val B = A.fixTo(16 downto 1, RoundType.ROUNDTOINF, sym = true )
val B = A.fixTo(10 downto 3, RoundType.FLOOR) // floor 3 bit, sat 5 bit @ highest
val B = A.fixTo(20 downto 3, RoundType.FLOOR) // floor 3 bit, expand 2 bit @ highest